
3/29/2004  1

Performance Evaluation of Linux Bridge 
 

James T. Yu 

School of Computer Science, Telecommunications, and Information System (CTI) 

DePaul University 

 
ABSTRACT 

 
This paper studies a unique network feature, Ethernet bridge, in the Linux kernel 

and conducts an extensive experiment to measure its performance as defined in RFC-

2544. The result shows that Linux bridge yields satisfactory performance if the system 

occupancy is less than 56% where its latency and throughput are comparable to Cisco 

Catalyst 2950 switch. The performance is considered acceptable until system occupancy 

reaches 85%. We also compared the performance between Linux bridge and Linux router, 

and the results are almost the same as measured by latency and throughput.  

The contributions of this study are summarized as follows: 

1. With its open source, Linux bridge is like programmable switch for education and 

research.  We are encouraged by the performance results of this study, and plan for 

more advanced research on Linux bridge in load balancing and high availability. 

2. The performance result shows that Linux can be deployed as an effective network 

device if its occupancy is properly engineered for targeted applications. One example 

is network firewall where the Wide Area Network (WAN) link is usually than 10M. 

3. Our experiment of bridge and router configuration can be used for classroom demo 

and lab exercise on data network education.  The use of RFC-2544 serves as a useful 

guide to learn network benchmark testing and performance measurements. 
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1. Introduction 
Linux, since its introduction by Linus Torvald in 1991, is well received by the 

industry and academics for various business, personal, and research applications.  It 

replaced Mac OS as the number 2 desktop OS in 2002, and ran on 25% corporate servers 

in the same year [1].  In addition to business and end-user applications, Linux has a 

unique network feature, Ethernet bridge, which is relatively new to many people. This 

feature is in the Linux kernel and conforms to the IEEE 802.3 standard [2][3]. Windows 

and UNIX do not support this feature of Ethernet bridge.  The purpose of this paper is to 

study the performance of Linux bridge and explores its applications for industry and 

academic uses.  

2. Linux Bridge Configuration 
In general, any workstation with two network interface cards (NIC) can be 

configured as a router.  These two NICs require two different IP addresses on two 

separate IP subnets as illustrated Figure 1. 

 

Figure 1.  Workstation Configuration for IP Router 

In this configuration, we can simply turn on the IP forwarding capability and the 

workstation becomes an IP router.  The procedure on Linux for this configuration is one 

simple command: 

echo "1" > /proc/sys/net/ipv4/ip_forward 
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The configuration procedure for IP routing on the Windows (NT, 2000, and XP) 

and Unix is similar to Linux. The protocol stacks for the IP router configuration are given 

in Figure 2. 

 

Figure 2.  Protocol Stacks for IP Routing 
On the other hand, it is more complex to support bridge configuration where 

multiple physical interfaces (or NICs) share a single IP address.  The bridge configuration 

is the foundation for many firewall products, and it usually requires expensive software 

for it.  The Linux operating system has the bridge software in its kernel and this feature 

can be turned on by the bridge utility[5].  In this configuration, a Linux workstation has 

multiple physical interfaces (NICs) but only one IP address as illustrated in Figure 3. 

 

Figure 3. Linux Configuration for Ethernet Bridge 
In order to create an Ethernet bridge interface, we need to add a bridge layer 

between the IP layer and the Ethernet (MAC) layer as illustrated in Figure 4. 
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Figure 4. Protocol Stacks for Linux Ethernet Bridge 

By default, an IP address is bound to a physical interface.  To create a bridge 

interface, we need to remove the binding of the original IP address to the physical 

interface and then create a new IP address for the new bridge interface.  An example of 

the configuration procedure is given in the following script. 

 
This bridge configuration also supports the Spanning Tree Algorithm and 

Protocol (STP) as defined in IEEE 802.1D [4].  The objectives of this research are to 

# ************ Create a bridge interface and it is called br1 
brctl addbr br1 
 
# ************ Add physical interfaces to the bridge interface 
brctl addif br1 eth0 
brctl addif br1 eth1 
 
# ************ Reset IP interface 
ifconfig eth0 0.0.0.0 
ifconfig eth1 0.0.0.0 
 
#Bring up the bridge 
ifconfig br1 up 
 
# **********  Set IP address of the bridge 
ifconfig br1 192.168.1.10 netmask 255.255.255.0 up 
 
# **********  Set IP default gateway  
route add default gw 192.168.10.1 

Ethernet Bridge 

IP 

MAC MAC 
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study the performance measurements of Linux bridge and explore its  applications for 

business and academic uses.   

3. Performance Measurement Environment 
We follow the standard of RFC-2544 for benchmark performance testing [6] 

where the key measurements are frame loss, throughput and latency as defined in RFC-

1242 [7]. The cause of frame loss on Ethernet is primarily due to congestion which 

causes buffer overflow.  In this case, we shall also notice longer latency and poorer 

throughput.  Therefore, we do not present the data of frame loss as it is implied from the 

other two measurements in our experiment. We applied two control variables for the 

performance test: input frame rate (frames per second or fps) and frame size.  Another 

important measure is Linux system occupancy which is the percentage of CPU time 

consumed by the running processes.  

The school of CTI at DePaul University received an equipment grant from IXIA, 

Inc. and the grant allows us to acquire the IXIA traffic generator and analyzer.  This 

equipment provides the opportunity to conduct advanced and high performance network 

measurements.  Our first baseline measurement is on the IXIA box itself, and its physical 

connection is illustrated in Figure 5 which is a loop-back connection. 

 
Figure 5  IXIA Configuration for Baseline Performance Test 

Port-01 of the IXIA box is used for data transmission and port-02 is used for 

reception.  Each data frame has a time stamp which is used to calculate latency at the 

receiving port.  The performance data is collected and presented in Table 1. 

 

port01

port02
1000BaseT Link
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Table 1.  Baseline Measurement of IXIA Traffic Generator 

Traffic Generation Frame Size
(in bytes) 

Throughput 
(in bps) 

Latency (µs) 

1 frame per second 64 512 1.8 µs 
1G bps 64 760M 1.8 µs 

1 frame per second 1500 12,000 1.8 µs 
1G bps 1500 1G 1.8 µs 

 
We have the following observations on this baseline testing : 

o The data shows that the IXIA box is a wire-speed traffic generator and capturer 

where its performance is almost the same as the physical cable with zero frame 

loss. The latency is a constant value even at the max input rate.   

o The latency is independent of the packet size because the latency measurement, as 

defined in the standard[7], is “the time interval starting when the last bit of 

the input frame reaches the input port and ending when the first bit of the 

output frame is seen on the output port.”   

o The throughput for the minimal frame size is the same as the theoretical limit.  

 

o We observed the throughput  close to 1G bps by using the max frame size. 

The second experiment is to baseline the performance measurements of two 

Cisco Catalyst 2950 switches which are required for Linux performance testing later.  

The physical connection for the test is illustrated in Figure 6.  

Inter Frame Gap (IFG) = 96 bit timer = 96/1,000M = 0.096 µs 

Preamble = 48 bit timer (8 bytes) = 8/1,000M = 0.064 µs 

Slot time = minimum frame size / 1,000M = 512/1,000M = 0.512 µs  

Link utilization = 0.512 ÷ (0.512 + 0.096 + 0.064) = 76% 

Throughput (theoretical limit for min size frames) = 760M bps  



3/29/2004  7

 
Figure 6  Catalyst 2950 Switch Configuration for Baseline Test 

The test results of latency and throughput are shown in Figure 7 and Figure 8.  

The frame input rates for the latency test are relatively low to avoid congestion.   
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Figure 7.  Catalyst 2950 Latency Test (Latency in µs vs. Frame Size) 
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Figure 8. Catalyst 2950 Throughput Test (TP in Kbps vs. Frame Size)  
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We also run an overload test for the min frame size with input rate greater than 

the theoretical limit (76M bps).  The result is given in Table 2. 

Table 2.  Catalyst 2950 Overload Test (Frame Size=64 bytes) 

FPS 
XMIT Rate 

(bps) 
Latency 

(us) 
Throughput 

(bps) 
10                5,120 13.5              5,089  

10,000 
 

5,120,000   13.5       5,100,000  

100,000 
 

51,200,000 13.5      48,000,000  

160,000 
 

81,920,000 13.5      75,000,000  

161,290 
 

82,580,645 13.5      75,600,000  

162,602 
 

83,252,033 100.0      76,000,000  

163,934 
 

83,934,426 
 

8,300.0      76,000,000  

1,000,000 
 

512,000,000 
 

8,100.0      76,000,000  
 
We have the following observations: 

o If the network is not congested, latency is independent of the frame input rate.  

o When the physical link is congested as shown in Table 2, latency increases by 2-3 

orders of magnitude. 

o Catalyst 2950 switch uses the store-and-forward method for frame forwarding, 

and the observed latency is close to the theoretical limit.  For example, for the 

frame size of 1,500 bytes, the theoretical limit is 120 µs, and our observed value 

is 126 µs.  Note that the latency measure is on the switch and its 100BaseTX link, 

excluding the delay of IXIA box and the 1000BaseT link.   

o For minimal frame size, we observed a throughput equal to the theoretical limit of 

76Mbps.  With the max frame size (1,500 bytes), we observed a throughput close 

to 100Mbps. 
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Our conclusion is that Catalyst 2950 has near wire-speed performance.  In our 

later testing with Linux bridge, both Catalyst switches would not cause any congestion 

issues as long as the input rate is less than the theoretical limit (76M for 64-byte frames 

and 99M for 1,500-byte frames). 

4. Linux Bridge Performance Test 
 

As discussed in Section 2, a Linux machine with two or more interfaces can be 

configured as an Ethernet bridge. After we tested and validated the Linux bridge 

configuration as illustrated in Figure 3, we connected the Linux bridge to the IXIA traffic 

generator as illustrated in Figure 9.  The reason we need two Catalyst switches is to 

convert 1000BaseT traffic to 100BaseTX traffic to the Linux bridge which does not have 

the 1000BaseT NIC.  The traffic generator, on the other hand, supports 1000BaseT only.  

This configuration also supports overload tests with various congestion scenarios. As we 

have demonstrated in Section 3, the Catalyst switch would not cause any congestion issue 

as long as the input rate is less than the theoretical limit. 

 

Figure 9.  Linux Bridge Test Configuration  

We first conducted the latency test where we set different frame sizes and frame 

input rates on IXIA port01.  The latency test results are illustrated in Figure 10 where we 

100BaseTX
Linux 
Bridge 

Catalyst 2950

100BaseTX

1000BaseT

1000BaseT

Catalyst  2950 
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include the data of Catalyst 2950 switch for comparison.  
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Figure 10.  Linux Bridge Latency Test (us vs. Frame Size) – nominal input rate 
It is interesting to see that the latency of Linux bridge is comparable to Catalyst 

2950 switch at the nominal input rate (1,000 fps), and this latency is close to the 

theoretical limit of Ethernet.[1]  One interesting observation is that when the input rate is 

low (1 fps), the latency of Linux bridge is longer than that of higher input rate (1,000 fps).  

This result is due to the characteristics of the Linux operating system where tasks are 

scheduled at a fixed interval.  When a frame arrives but the bridge task is not scheduled, 

this frame will experience longer delay.  This small variation (up to 50 µs) should not be 

an issue to most network applications.  

Our next test is to conduct an overload test and observe the Linux bridge behavior.  

We turned on the performance monitor on the Linux bridge: 

sar –u 5 100     # show Linux CPU occupancy every 5 seconds for 100 runs 

The CPU of the Linux machine is AMD Duron 1.3GHz with 512M memory.  The 

overload test results are shown in Table 3. 

                                                 
1 The comparison of Linux bridge with Catalyst 2950 is on a single 100BaseTX port.  A Catalyst 2950 
switch (2950T) has 24 100BaseTX ports and 2 1000BaseT ports, plus a switch fabric.  Its aggregated 
capacity is probably 100 times more than a Linux bridge. 
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Table 3.  Linux Bridge Latency Overload Test (64 bytes) 

FPS 
Input Rate 

(bps) 
Latency 

(us) 
Throughput 

(bps) 
Linux CPU 
Occupancy 

100   51,200 25         52,000 0% 

1,000   512,000 25       511,000 2% 

10,000   5,120,000 25     5,000,000 21% 

20,000  10,240,000 25   10,000,000 42% 

40,000     20,480,000 25   20,000,000 56% 

50,000   25,600,000 29 24,000,000 70% 

55,556 28,444,444 29 28,000,000 77% 

58,824    30,117,647 29   29,000,000 82% 

 62,500    32,000,000 32   30,000,000 85% 

 64,516   33,032,258 36   32,000,000 85% 

 65,574   33,573,770 37   32,300,000 86% 

  66,225   33,907,285 87   32,700,000 N/A* 

  66,667    34,133,333 22,987   25,000,000 N/A* 

 100,000     51,200,000 44,987   18,000,000 N/A* 

*All user applications (including sar) are blocked for a lack of CPU resource. 

The overload test shows that the CPU is the limiting factor for the overall bridge 

performance. Linux bridge shows the performance comparable to Catalyst 2950 (a 

commercial switch) when the  occupancy is less than 56% where the machine can process 

up to 40,000 frames per second (fps).  We observed some performance degradation when 

the occupancy increases from 56% to 85%.  The congestion occurs as the occupancy 

reaches 85% where the latency jumps from 87µs to 23ms. The throughput also goes 

down from 33M to 25M bps.  If input rate continues increasing, the perform keeps going 

down for both latency and throughput. 

The last test is to measure the throughput and the results are shown in Figure 11 

where we observe a throughput of 96M bps with the max frame size (1,500 bytes) and an 
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input rate greater than 100M bps. Although the latency is very high (tens of milliseconds), 

we are glad to see a throughput close to the physical limitation. 
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Figure 11.  Linux Bridge Throughput Test (TP in bps vs. Frame Size) 

5. Linux Router Performance Test 
In addition to the Linux bridge performance, we are interested in the Linux 

routing performance where we expect the Layer-2 performance (bridge) to be 

significantly better than the Layer-3 performance (router).  We first successfully tested 

the router functionality as illustrated in Figure 1.  The physical connection for the Linux 

router performance test is illustrated in Figure 12 where it also shows the IP address 

scheme for the routing test.  

 
Figure 12.  Linux Router Performance Test Configuration 
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We conducted the same latency and throughput tests and the results are illustrated 

in Figure 13 and Figure 14.  The latency test was conducted at a low input rate (1,000 

fps), and we do not observe much variation with input rates as long as the system 

occupancy is within 56%.   
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Figure 13.  Linux Router Latency Test (Latency in µs vs. Frame Size) 
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Figure 14.  Linux Router Throughput Test (TP in bps vs. Frame Size) 
The data of Linux bridge is added into both figures for comparison where we 

observed 5 µs longer latency for the Linux router, and this difference is independent of 

the frame size.  Our interpretation is that it takes a little more CPU resource to read an IP 
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packet while the process of IP routing table and MAC forwarding table takes about the 

same time 

The throughput of Linux router is similar to that of Linux bridge (Figure 11) 

except for small frames where bridge yields better performance than router (3M bps vs. 

0.6M bps for 64-byte frames). When the frame size increases to 512 bytes, we do not 

observe any difference in throughput between bridge and router.  When the input rate is 

low (1,000 fps), the throughput is identical between bridge and router, regardless of 

frame sizes. As we observed in the latency data, this result is consistent with our 

understanding of how Linux router works. (The process of routing table and MAC 

forwarding table consumes same amount of resource.) As we noted earlier, we can push 

the routing throughput close to the physical limit by using the max frame size and a high 

input rate where we observed 96M bps. 

6. Conclusions and Future Work 
We conducted a detailed study of the Linux bridge performance based on the 

standard benchmark testing as defined in RFC-2544.  The performance data of Linux 

bridge is compared to that of a commercial Ethernet switch (Catalyst 2950) on a single 

port basis, and the results are comparable if the Linux CPU occupancy is below 56%.  In 

this case, the performance is close to the theoretical limit.  We observed slightly 

performance degradation when the CPU occupancy increases from 56% to 85%.  After 

that, congestion occurs and the performance goes down by 2-3 order of magnitude.  

Because the Linux CPU of this study is only 1.3GHz, we are interested in further study 

with more powerful processors.  In addition, we expect to see higher performance with 

server NIC which has the processing power on the NIC.  
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We also compared the performance between Linux bridge and Linux router. In 

contrary to our initial expectation, the results are almost identical for latency and 

throughput.  Our interpretation is that the process of the IP routing table and the MAC 

forwarding table takes about the same amount of CPU resource. 

The conclusion of the study is that Linux can be served as an effective platform 

for network applications and research.  If one can engineer the CPU resource with 56% 

reserved for the network layer, the user applications would experience satisfactory results.  

One application is network firewall where the Wide Area Network (WAN) link is usually 

less than 10M.  A Linux-based firewall would have no performance issue for such an 

application [8]. 

Another contribution of this study is to use Linux for data networking education.  

We provided detailed procedure for the experiment and it can be demonstrated in a 

classroom setting or as a lab exercise.  An instructor can configure Linux for teaching 

Ethernet in one week, and configure the same box for  IP routing the following week. The 

RFC-2544 standard is a useful guide for learning benchmark testing and performance 

measurements. 

Lastly, Linux provides the source code of Ethernet bridge, and we can modify the 

source code for advanced research on data networking.  For example, we are looking into 

two new Ethernet standards, Rapid STP (IEEE 802.1w) [9] and Link Aggregation (IEEE 

802.3ad) in the areas of load balancing and fault tolerance. This research requires 

enhancement to the existing source code of Linux kernel For the purpose of education, 

we can turn on the trace in the source code, and Linux can show the details of the MAC 

learning, STP state transition, various bridge timers, and the content of Bridge Protocol 
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Data Unit (BPDU).  We hope this paper will bring more interest in Linux bridge and 

moiré support of enhancement to its source code. 
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